Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cannabis Cannabinoid Res ; 9(2): 464-469, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38252548

ABSTRACT

Introduction: Mycobacterium tuberculosis, the etiologic agent of tuberculosis (TB), has killed nearly one billion people during the last two centuries. Nowadays, TB remains a major global health problem ranked among the top 10 causes of death worldwide. One of the main challenges in developing new strategies to fight TB is focused on reducing the duration and complexity of drug regimens. Cannabidiol (CBD) is the main nonpsychoactive ingredient extracted from the Cannabis sativa L. plant, which has been shown to be biologically active against bacteria. The purpose of this work was to investigate the antimicrobial effect of CBD on M. tuberculosis intracellular infection. Materials and Methods: To assess the minimum inhibitory concentration (MIC) of CBD on mycobacterial strains, the MTT assay was performed on Mycobacterium smegmatis, and the Colony-Forming Unit (CFU) assay was conducted on MtbH37Rv. Additionally, the cytotoxic effect of CBD on THP-1 cells was assessed by MTT assay. Moreover, macrophages derived from the THP-1 cell were infected with MtbH37Rv (multiplicity of infection 1:10) to evaluate the intracellular activity of CBD by determining the CFU/mL. Results: Antimicrobial activity against M. smegmatis (MIC=100 µM) and MtbH37Rv (MIC=25 µM) cultures was exhibited by CBD. Furthermore, the effect of CBD was also evaluated on MtbH37Rv infected macrophage cells. Interestingly, a reduction in viable intracellular MtbH37Rv bacteria was observed after 24 h of treatment. Moreover, CBD exhibited a safe profile toward human THP-1 cells, since it showed no toxicity (CC50=1075 µM) at a concentration of antibacterial effect (selectivity index 43). Conclusion: These results extend the knowledge regarding the antimicrobial activity of CBD and demonstrate its ability to kill the human intracellular pathogen M. tuberculosis.


Subject(s)
Cannabidiol , Mycobacterium tuberculosis , Tuberculosis , Humans , Cannabidiol/pharmacology , Tuberculosis/therapy , Anti-Bacterial Agents/pharmacology , Macrophages
2.
Int J Mol Sci ; 24(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36902461

ABSTRACT

Mycobacterium tuberculosis (Mtb), the etiologic agent of tuberculosis (TB), has killed nearly one billion people in the last two centuries. Nowadays, TB remains a major global health problem, ranking among the thirteen leading causes of death worldwide. Human TB infection spans different levels of stages: incipient, subclinical, latent and active TB, all of them with varying symptoms, microbiological characteristics, immune responses and pathologies profiles. After infection, Mtb interacts with diverse cells of both innate and adaptive immune compartments, playing a crucial role in the modulation and development of the pathology. Underlying TB clinical manifestations, individual immunological profiles can be identified in patients with active TB according to the strength of their immune responses to Mtb infection, defining diverse endotypes. Those different endotypes are regulated by a complex interaction of the patient's cellular metabolism, genetic background, epigenetics, and gene transcriptional regulation. Here, we review immunological categorizations of TB patients based on the activation of different cellular populations (both myeloid and lymphocytic subsets) and humoral mediators (such as cytokines and lipid mediators). The analysis of the participating factors that operate during active Mtb infection shaping the immunological status or immune endotypes of TB patients could contribute to the development of Host Directed Therapy.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Tuberculosis/microbiology , Mycobacterium tuberculosis/metabolism , Latent Tuberculosis/microbiology , Cytokines/metabolism
3.
Pharmaceutics ; 14(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35631546

ABSTRACT

Among respiratory infections, tuberculosis was the second deadliest infectious disease in 2020 behind COVID-19. Inhalable nanocarriers offer the possibility of actively targeting anti-tuberculosis drugs to the lungs, especially to alveolar macrophages (cellular reservoirs of the Mycobacterium tuberculosis). Our strategy was based on the development of a mannose-decorated micellar nanoformulation based in Soluplus® to co-encapsulate rifampicin and curcumin. The former is one of the most effective anti-tuberculosis first-line drugs, while curcumin has demonstrated potential anti-mycobacterial properties. Mannose-coated rifampicin (10 mg/mL)-curcumin (5 mg/mL)-loaded polymeric micelles (10% w/v) demonstrated excellent colloidal properties with micellar size ~108 ± 1 nm after freeze-drying, and they remain stable under dilution in simulated interstitial lung fluid. Drug-loaded polymeric micelles were suitable for drug delivery to the deep lung with lung accumulation, according to the in vitro nebulization studies and the in vivo biodistribution assays of radiolabeled (99mTc) polymeric micelles, respectively. Hence, the nanoformulation did not exhibit hemolytic potential. Interestingly, the addition of mannose significantly improved (5.2-fold) the microbicidal efficacy against Mycobacterium tuberculosis H37Rv of the drug-co-loaded systems in comparison with their counterpart mannose-free polymeric micelles. Thus, this novel inhaled nanoformulation has demonstrated its potential for active drug delivery in pulmonary tuberculosis therapy.

5.
Sci Rep ; 11(1): 13559, 2021 06 30.
Article in English | MEDLINE | ID: mdl-34193890

ABSTRACT

Prostaglandin E2 (PGE2), an active lipid compound derived from arachidonic acid, regulates different stages of the immune response of the host during several pathologies such as chronic infections or cancer. In fact, manipulation of PGE2 levels was proposed as an approach for countering the Type I IFN signature of tuberculosis (TB). However, very limited information regarding the PGE2 pathway in patients with active TB is currently available. In the present work, we demonstrated that PGE2 exerts a potent immunosuppressive action during the immune response of the human host against Mycobacterium tuberculosis (Mtb) infection. Actually, we showed that PGE2 significantly reduced the surface expression of several immunological receptors, the lymphoproliferation and the production of proinflammatory cytokines. In addition, PGE2 promoted autophagy in monocytes and neutrophils cultured with Mtb antigens. These results suggest that PGE2 might be attenuating the excessive inflammatory immune response caused by Mtb, emerging as an attractive therapeutic target. Taken together, our findings contribute to the knowledge of the role of PGE2 in the human host resistance to Mtb and highlight the potential of this lipid mediator as a tool to improve anti-TB treatment.


Subject(s)
Dinoprostone/pharmacology , Immunosuppressive Agents/pharmacology , Monocytes/immunology , Mycobacterium tuberculosis/immunology , Neutrophils/immunology , Tuberculosis/immunology , Adult , Dinoprostone/immunology , Female , Humans , Immunosuppressive Agents/immunology , Male
6.
Front Cell Infect Microbiol ; 11: 820095, 2021.
Article in English | MEDLINE | ID: mdl-35071056

ABSTRACT

Immunity against Mycobacterium tuberculosis (Mtb) is highly complex, and the outcome of the infection depends on the role of several immune mediators with particular temporal dynamics on the host microenvironment. Autophagy is a central homeostatic mechanism that plays a role on immunity against intracellular pathogens, including Mtb. Enhanced autophagy in macrophages mediates elimination of intracellular Mtb through lytic and antimicrobial properties only found in autolysosomes. Additionally, it has been demonstrated that standard anti-tuberculosis chemotherapy depends on host autophagy to coordinate successful antimicrobial responses to mycobacteria. Notably, autophagy constitutes an anti-inflammatory mechanism that protects against endomembrane damage triggered by several endogenous components or infectious agents and precludes excessive inflammation. It has also been reported that autophagy can be modulated by cytokines and other immunological signals. Most of the studies on autophagy as a defense mechanism against Mycobacterium have been performed using murine models or human cell lines. However, very limited information exists about the autophagic response in cells from tuberculosis patients. Herein, we review studies that face the autophagy process in tuberculosis patients as a component of the immune response of the human host against an intracellular microorganism such as Mtb. Interestingly, these findings might contribute to recognize new targets for the development of novel therapeutic tools to combat Mtb. Actually, either as a potential successful vaccine or a complementary immunotherapy, efforts are needed to further elucidate the role of autophagy during the immune response of the human host, which will allow to achieve protective and therapeutic benefits in human tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Autophagy , Cytokines , Humans , Macrophages , Mice
7.
Autophagy ; 17(9): 2629-2638, 2021 09.
Article in English | MEDLINE | ID: mdl-32954947

ABSTRACT

Neutrophils infected with Mycobacterium tuberculosis (Mtb) predominate in tuberculosis patients' lungs. Neutrophils phagocytose the pathogen, but the mechanism of pathogen elimination is controversial. Macroautophagy/autophagy, a crucial mechanism for several neutrophil functions, can be modulated by immunological mediators. The costimulatory molecule SLAMF1 can act as a microbial sensor in macrophages being also able to interact with autophagy-related proteins. Here, we demonstrate for the first time that human neutrophils express SLAMF1 upon Mtb-stimulation. Furthermore, SLAMF1 was found colocalizing with LC3B+ vesicles, and activation of SLAMF1 increased neutrophil autophagy induced by Mtb. Finally, tuberculosis patients' neutrophils displayed reduced levels of SLAMF1 and lower levels of autophagy against Mtb as compared to healthy controls. Altogether, these results indicate that SLAMF1 participates in neutrophil autophagy during active tuberculosis.Abbreviations: AFB: acid-fast bacilli; BafA1: bafilomycin A1; CLL: chronic lymphocytic leukemia; DPI: diphenyleneiodonium; EVs: extracellular vesicles; FBS: fetal bovine serum; HD: healthy donors; HR: high responder (tuberculosis patient); IFNG: interferon gamma; IL1B: interleukin 1 beta; IL17A: interleukin 17A; IL8: interleukin 8; LR: low responder (tuberculosis patient); mAb: monoclonal antibody; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAPK: mitogen-activated protein kinase; MAPK1/ERK2: mitogen-activated protein kinase 1; MAPK14/p38: mitogen-activated protein kinase 14; Mtb: Mycobacterium tuberculosis; Mtb-Ag: Mycobacterium tuberculosis, Strain H37Rv, whole cell lysate; NETs: neutrophils extracellular traps; PPD: purified protein derivative; ROS: reactive oxygen species; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; SLAMF1: signaling lymphocytic activation molecule family member 1; TB: tuberculosis; TLR: toll like receptor.


Subject(s)
Autophagy , Neutrophils , Signaling Lymphocytic Activation Molecule Family Member 1 , Tuberculosis , Humans , Macrophages/metabolism , Mycobacterium tuberculosis , Neutrophils/cytology , Neutrophils/microbiology , Signaling Lymphocytic Activation Molecule Family Member 1/metabolism , Tuberculosis/microbiology
8.
Front Cell Infect Microbiol ; 10: 581812, 2020.
Article in English | MEDLINE | ID: mdl-33072631

ABSTRACT

Mycobacterium tuberculosis (Mtb) infection is one of the leading causes of death worldwide. The Modified Vaccinia Ankara (MVA) vaccine vector expressing the mycobacterial antigen 85A (MVA85A) was demonstrated to be safe, although it did not improve BCG efficacy, denoting the need to search for improved tuberculosis vaccines. In this work, we investigated the effect of IL-12 DNA -as an adjuvant- on an Ag85A DNA prime/MVA85A boost vaccination regimen. We evaluated the immune response profile elicited in mice and the protection conferred against intratracheal Mtb H37Rv challenge. We observed that the immunization scheme including DNA-A85A+DNA-IL-12/MVA85A induced a strong IFN-γ production to Ag85A in vitro, with a significant expansion of IFN-γ+CD4+ and IFN-γ+CD8+ anti-Ag85A lymphocytes. Furthermore, we also detected a significant increase in the proportion of specific CD8+CD107+ T cells against Ag85A. Additionally, inclusion of IL-12 DNA in the DNA-A85A/MVA85A vaccine scheme induced a marked augment in anti-Ag85A IgG levels. Interestingly, after 30 days of infection with Mtb H37Rv, DNA-A85A+DNA-IL-12/MVA85A vaccinated mice displayed a significant reduction in lung bacterial burden. Together, our findings suggest that IL-12 DNA might be useful as a molecular adjuvant in an Ag85A DNA/MVA prime-boost vaccine against Mtb infection.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , Vaccines, DNA , Acyltransferases/genetics , Animals , Antigens, Bacterial/genetics , BCG Vaccine , DNA , Immunization, Secondary , Interleukin-12/genetics , Mice , Mycobacterium tuberculosis/genetics , Tuberculosis/prevention & control , Vaccines, DNA/genetics
9.
Front Immunol ; 10: 2248, 2019.
Article in English | MEDLINE | ID: mdl-31616423

ABSTRACT

Th17 lymphocytes, that produce IL17A, IL17F, and IL22, play a crucial role during the immune response against Mycobacterium tuberculosis (Mtb) infection. Whereas, the contribution of IL17A in immunity to tuberculosis is usually accepted, the role of IL17F has been scarcely studied so far. The aim of this work was to evaluate the existence of a potential association of the non-synonymous variant rs763780 SNP of the IL17F gene with human tuberculosis. Accordingly, by comparing healthy donors (HD) and tuberculosis patients (TB) populations we demonstrated an association between the C allele of the SNP and the susceptibility to tuberculosis disease in Argentina. Furthermore, we found that peripheral blood mononuclear cells (PBMCs) from individuals with a more effective immune response against Mtb secreted the highest levels of IL17F when stimulated with a lysate of Mtb (Mtb-Ag). Besides, we evidenced that Mtb-Ag-stimulated PBMCs from HD carrying the C variant of the SNP displayed the lowest IFNG secretion, proliferation index, and SLAM expression as compared to TT carriers. Moreover, Mtb-Ag-stimulated PBMCs from TB carrying the C allele produced the lowest levels of IFNG, the highest level of IL17A, and the minimum proliferation indexes as compared to TT TB, suggesting a relationship between the C allele and tuberculosis severity. In fact, TB carrying the C allele presented a more severe disease, with the highest bacilli burden in sputum. Together, our findings identify the IL17F rs763780 SNP as a biomarker of tuberculosis susceptibility and advanced disease severity in Argentina, suggesting that IL17F could be a critical cytokine in tuberculosis immunity.


Subject(s)
Genetic Predisposition to Disease/genetics , Interleukin-17/genetics , Polymorphism, Single Nucleotide/genetics , Tuberculosis/genetics , Adult , Alleles , Argentina , Case-Control Studies , Female , Gene Frequency/genetics , Genotype , Heterozygote , Humans , Leukocytes, Mononuclear , Male , Mycobacterium tuberculosis/pathogenicity
10.
Autophagy ; 13(7): 1191-1204, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28581888

ABSTRACT

During mycobacterial infection, macroautophagy/autophagy, a process modulated by cytokines, is essential for mounting successful host responses. Autophagy collaborates with human immune responses against Mycobacterium tuberculosis (Mt) in association with specific IFNG secreted against the pathogen. However, IFNG alone is not sufficient to the complete bacterial eradication, and other cytokines might be required. Actually, induction of Th1 and Th17 immune responses are required for protection against Mt. Accordingly, we showed that IL17A and IFNG expression in lymphocytes from tuberculosis patients correlates with disease severity. Here we investigate the role of IFNG and IL17A during autophagy in monocytes infected with Mt H37Rv or the mutant MtΔRD1. Patients with active disease were classified as high responder (HR) or low responder (LR) according to their T cell responses against Mt. IL17A augmented autophagy in infected monocytes from HR patients through a mechanism that activated MAPK1/ERK2-MAPK3/ERK1 but, during infection of monocytes from LR patients, IL17A had no effect on the autophagic response. In contrast, addition of IFNG to infected monocytes, increased autophagy by activating MAPK14/p38 α both in HR and LR patients. Interestingly, proteins codified in the RD1 region did not interfere with IFNG and IL17A autophagy induction. Therefore, in severe tuberculosis patients' monocytes, IL17A was unable to augment autophagy because of a defect in the MAPK1/3 signaling pathway. In contrast, both IFNG and IL17A increased autophagy levels in patients with strong immunity to Mt, promoting mycobacterial killing. Our findings might contribute to recognize new targets for the development of novel therapeutic tools to fight the pathogen.


Subject(s)
Autophagy , Interleukin-17/physiology , Monocytes/immunology , Tuberculosis/immunology , Cells, Cultured , Humans , Interferon-gamma/physiology , Monocytes/microbiology , Mycobacterium tuberculosis/physiology , Signal Transduction , Tuberculosis/diagnosis , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...